Running Istio Service Mesh on Amazon EKS

I have not spend too much time with Istio in the last weeks but after my previous article about running Istio Service Mesh on OpenShift I wanted to do the same and deploy Istio Service Mesh on an Amazon EKS cluster. This time I did the recommended way of using a helm template to deploy Istio which is more flexible then the Ansible operator for the OpenShift deployment.

Once you have created your EKS cluster you can start, there are not many prerequisite for EKS so you can basically create the istio namespace and create a secret for Kiali, and start to deploy the helm template:

kubectl create namespace istio-system

USERNAME=$(echo -n 'admin' | base64)
PASSPHRASE=$(echo -n 'supersecretpassword!!' | base64)
NAMESPACE=istio-system

cat <<EOF | kubectl apply -n istio-system -f -
apiVersion: v1
kind: Secret
metadata:
  name: kiali
  namespace: $NAMESPACE
  labels:
    app: kiali
type: Opaque
data:
  username: $USERNAME
  passphrase: $PASSPHRASE
EOF

You then create the Custom Resource Definitions (CRDs) for Istio:

helm template istio-1.1.4/install/kubernetes/helm/istio-init --name istio-init --namespace istio-system | kubectl apply -f -  

# Check the created Istio CRDs 
kubectl get crds -n istio-system | grep 'istio.io\|certmanager.k8s.io' | wc -l

At this point you can deploy the main Istio Helm template. See the installation options for more detail about customizing the installation:

helm template istio-1.1.4/install/kubernetes/helm/istio --name istio --namespace istio-system  --set grafana.enabled=true --set tracing.enabled=true --set kiali.enabled=true --set kiali.dashboard.secretName=kiali --set kiali.dashboard.usernameKey=username --set kiali.dashboard.passphraseKey=passphrase | kubectl apply -f -
 
# Validate and see that all components start
kubectl get pods -n istio-system -w  

The Kiali service has the type clusterIP which we need to change to type LoadBalancer:

kubectl patch svc kiali -n istio-system --patch '{"spec": {"type": "LoadBalancer" }}'

# Get the create AWS ELB for the Kiali service
$ kubectl get svc kiali -n istio-system --no-headers | awk '{ print $4 }'
abbf8224773f111e99e8a066e034c3d4-78576474.eu-west-1.elb.amazonaws.com

Now we are able to access the Kiali dashboard and login with the credentials I have specified earlier in the Kiali secret.

We didn’t deploy anything else yet so the default namespace is empty:

I recommend having a look at the Istio-Sidecar injection. If your istio-sidecar containers are not getting deployed you might forgot to allow TCP port 443 from your control-plane to worker nodes. Have a look at the Github issue about this: Admission control webhooks (e.g. sidecar injector) don’t work on EKS.

We can continue and deploy the Google Hipster Shop example.

# Label default namespace to inject Envoy sidecar
kubectl label namespace default istio-injection=enabled

# Check istio sidecar injector label
kubectl get namespace -L istio-injection

# Deploy Google hipster shop manifests
kubectl create -f https://raw.githubusercontent.com/berndonline/aws-eks-terraform/master/example/istio-hipster-shop.yml
kubectl create -f https://raw.githubusercontent.com/berndonline/aws-eks-terraform/master/example/istio-manifest.yml

# Wait a few minutes before deploying the load generator
kubectl create -f https://raw.githubusercontent.com/berndonline/aws-eks-terraform/master/example/istio-loadgenerator.yml

We can check again the Kiali dashboard once the application is deployed and healthy. If there are issues with the Envoy sidecar you will see a warning “Missing Sidecar”:

We are also able to see the graph which shows detailed traffic flows within the microservice application.

Let’s get the hostname for the istio-ingressgateway service and connect via the web browser:

$ kubectl get svc istio-ingressgateway -n istio-system --no-headers | awk '{ print $4 }'
a16f7090c74ca11e9a1fb02cd763ca9e-362893117.eu-west-1.elb.amazonaws.com

Before you destroy your EKS cluster you should remove all installed components because Kubernetes service type LoadBalancer created AWS ELBs which will not get deleted and stay behind when you delete the EKS cluster:

kubectl label namespace default istio-injection-
kubectl delete -f https://raw.githubusercontent.com/berndonline/aws-eks-terraform/master/example/istio-loadgenerator.yml
kubectl delete -f https://raw.githubusercontent.com/berndonline/aws-eks-terraform/master/example/istio-hipster-shop.yml
kubectl delete -f https://raw.githubusercontent.com/berndonline/aws-eks-terraform/master/example/istio-manifest.yml

Finally to remove Istio from EKS you run the same Helm template command but do kubectl delete:

helm template istio-1.1.4/install/kubernetes/helm/istio --name istio --namespace istio-system  --set grafana.enabled=true --set tracing.enabled=true --set kiali.enabled=true --set kiali.dashboard.secretName=kiali --set kiali.dashboard.usernameKey=username --set kiali.dashboard.passphraseKey=passphrase | kubectl delete -f -

Very simple to get started with Istio Service Mesh on EKS and if I find some time I will give the Istio Multicluster a try and see how this works to span Istio service mesh across multiple Kubernetes clusters.

Create Amazon EKS cluster using Terraform

I have found AWS EKS introduction on the HashiCorp learning portal and thought I’d give it a try and test the Amazon Elastic Kubernetes Services. Using cloud native container services like EKS is getting more popular and makes it easier for everyone running a Kubernetes cluster and start deploying container straight away without the overhead of maintaining and patching the control-plane and leave this to AWS.

Creating the EKS cluster is pretty easy by just running terraform apply. The only prerequisite is to have kubectl and AWS IAM authenticator installed. You find the terraform files on my repository https://github.com/berndonline/aws-eks-terraform

# Initializing and create EKS cluster
terraform init
terraform apply  

# Generate kubeconfig and configmap for adding worker nodes
terraform output kubeconfig > ./kubeconfig
terraform output config_map_aws_auth > ./config_map_aws_auth.yaml

# Apply configmap for worker nodes to join the cluster
export KUBECONFIG=./kubeconfig
kubectl apply -f ./config_map_aws_auth.yaml
kubectl get nodes --watch

Let’s have a look at the AWS EKS console:

In the cluster details you see general information:

On the EC2 side you see two worker nodes as defined:

Now we can deploy an example application:

$ kubectl create -f example/hello-kubernetes.yml
service/hello-kubernetes created
deployment.apps/hello-kubernetes created
ingress.extensions/hello-ingress created

Checking that the pods are running and the correct resources are created:

$ kubectl get all
NAME                                   READY   STATUS    RESTARTS   AGE
pod/hello-kubernetes-b75555c67-4fhfn   1/1     Running   0          1m
pod/hello-kubernetes-b75555c67-pzmlw   1/1     Running   0          1m

NAME                       TYPE           CLUSTER-IP       EXTERNAL-IP                                                              PORT(S)        AGE
service/hello-kubernetes   LoadBalancer   172.20.108.223   ac1dc1ab84e5c11e9ab7e0211179d9b9-394134490.eu-west-1.elb.amazonaws.com   80:32043/TCP   1m
service/kubernetes         ClusterIP      172.20.0.1                                                                                443/TCP        26m

NAME                               DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/hello-kubernetes   2         2         2            2           1m

NAME                                         DESIRED   CURRENT   READY   AGE
replicaset.apps/hello-kubernetes-b75555c67   2         2         2       1m

With the ingress service the EKS cluster is automatically creating an ELB load balancer and forward traffic to the two worker nodes:

Example application:

I have used a very simple Jenkins pipeline to create the AWS EKS cluster:

pipeline {
    agent any
    environment {
        AWS_ACCESS_KEY_ID = credentials('AWS_ACCESS_KEY_ID')
        AWS_SECRET_ACCESS_KEY = credentials('AWS_SECRET_ACCESS_KEY')
    }
    stages {
        stage('prepare workspace') {
            steps {
                sh 'rm -rf *'
                git branch: 'master', url: 'https://github.com/berndonline/aws-eks-terraform.git'
                sh 'terraform init'
            }
        }
        stage('terraform apply') {
            steps {
                sh 'terraform apply -auto-approve'
                sh 'terraform output kubeconfig > ./kubeconfig'
                sh 'terraform output config_map_aws_auth > ./config_map_aws_auth.yaml'
                sh 'export KUBECONFIG=./kubeconfig'
            }
        }
        stage('add worker nodes') {
            steps {
                sh 'kubectl apply -f ./config_map_aws_auth.yaml --kubeconfig=./kubeconfig'
                sh 'sleep 60'
            }
        }
        stage('deploy example application') {
            steps {    
                sh 'kubectl apply -f ./example/hello-kubernetes.yml --kubeconfig=./kubeconfig'
                sh 'kubectl get all --kubeconfig=./kubeconfig'
            }
        }
        stage('Run terraform destroy') {
            steps {
                input 'Run terraform destroy?'
            }
        }
        stage('terraform destroy') {
            steps {
                sh 'kubectl delete -f ./example/hello-kubernetes.yml --kubeconfig=./kubeconfig'
                sh 'sleep 60'
                sh 'terraform destroy -force'
            }
        }
    }
}

I really like how easy and quick it is to create an AWS EKS cluster in less than 15 mins.

Running Istio Service Mesh on OpenShift

In the Kubernetes/OpenShift community everyone is talking about Istio service mesh, so I wanted to share my experience about the installation and running a sample microservice application with Istio on OpenShift 3.11 and 4.0. Service mesh on OpenShift is still at least a few month away from being available generally to run in production but this gives you the possibility to start testing and exploring Istio. I have found good documentation about installing Istio on OCP and OKD have a look for more information.

To install Istio on OpenShift 3.11 you need to apply the node and master prerequisites you see below; for OpenShift 4.0 and above you can skip these steps and go directly to the istio-operator installation:

sudo bash -c 'cat << EOF > /etc/origin/master/master-config.patch
admissionConfig:
  pluginConfig:
    MutatingAdmissionWebhook:
      configuration:
        apiVersion: apiserver.config.k8s.io/v1alpha1
        kubeConfigFile: /dev/null
        kind: WebhookAdmission
    ValidatingAdmissionWebhook:
      configuration:
        apiVersion: apiserver.config.k8s.io/v1alpha1
        kubeConfigFile: /dev/null
        kind: WebhookAdmission
EOF'
        
sudo cp -p /etc/origin/master/master-config.yaml /etc/origin/master/master-config.yaml.prepatch
sudo bash -c 'oc ex config patch /etc/origin/master/master-config.yaml.prepatch -p "$(cat /etc/origin/master/master-config.patch)" > /etc/origin/master/master-config.yaml'
sudo su -
master-restart api
master-restart controllers
exit       

sudo bash -c 'cat << EOF > /etc/sysctl.d/99-elasticsearch.conf 
vm.max_map_count = 262144
EOF'

sudo sysctl vm.max_map_count=262144

The Istio installation is straight forward by starting first to install the istio-operator:

oc new-project istio-operator
oc new-app -f https://raw.githubusercontent.com/Maistra/openshift-ansible/maistra-0.9/istio/istio_community_operator_template.yaml --param=OPENSHIFT_ISTIO_MASTER_PUBLIC_URL=<-master-public-hostname->

Verify the operator deployment:

oc logs -n istio-operator $(oc -n istio-operator get pods -l name=istio-operator --output=jsonpath={.items..metadata.name})

Once the operator is running we can start deploying Istio components by creating a custom resource:

cat << EOF >  ./istio-installation.yaml
apiVersion: "istio.openshift.com/v1alpha1"
kind: "Installation"
metadata:
  name: "istio-installation"
  namespace: istio-operator
EOF

oc create -n istio-operator -f ./istio-installation.yaml

Check and watch the Istio installation progress which might take a while to complete:

oc get pods -n istio-system -w

# The installation of the core components is finished when you see:
...
openshift-ansible-istio-installer-job-cnw72   0/1       Completed   0         4m

Afterwards, to finish off the Istio installation, we need to install the Kiali web console:

bash <(curl -L https://git.io/getLatestKialiOperator)
oc get route -n istio-system -l app=kiali

Verifying that all Istio components are running:

$ oc get pods -n istio-system
NAME                                          READY     STATUS      RESTARTS   AGE
elasticsearch-0                               1/1       Running     0          9m
grafana-74b5796d94-4ll5d                      1/1       Running     0          9m
istio-citadel-db879c7f8-kfxfk                 1/1       Running     0          11m
istio-egressgateway-6d78858d89-58lsd          1/1       Running     0          11m
istio-galley-6ff54d9586-8r7cl                 1/1       Running     0          11m
istio-ingressgateway-5dcf9fdf4b-4fjj5         1/1       Running     0          11m
istio-pilot-7ccf64f659-ghh7d                  2/2       Running     0          11m
istio-policy-6c86656499-v45zr                 2/2       Running     3          11m
istio-sidecar-injector-6f696b8495-8qqjt       1/1       Running     0          11m
istio-telemetry-686f78b66b-v7ljf              2/2       Running     3          11m
jaeger-agent-k4tpz                            1/1       Running     0          9m
jaeger-collector-64bc5678dd-wlknc             1/1       Running     0          9m
jaeger-query-776d4d754b-8z47d                 1/1       Running     0          9m
kiali-5fd946b855-7lw2h                        1/1       Running     0          2m
openshift-ansible-istio-installer-job-cnw72   0/1       Completed   0          13m
prometheus-75b849445c-l7rlr                   1/1       Running     0          11m

Let’s start to deploy the microservice application example by using the Google Hipster Shop, it contains multiple microservices which is great to test with Istio:

# Create new project
oc new-project hipster-shop

# Set permissions to allow Istio to deploy the Envoy-Proxy side-car container
oc adm policy add-scc-to-user anyuid -z default -n hipster-shop
oc adm policy add-scc-to-user privileged -z default -n hipster-shop

# Create Hipster Shop deployments and Istio services
oc create -f https://raw.githubusercontent.com/berndonline/openshift-ansible/master/examples/istio-hipster-shop.yml
oc create -f https://raw.githubusercontent.com/berndonline/openshift-ansible/master/examples/istio-manifest.yml

# Wait and check that all pods are running before creating the load generator
oc get pods -n hipster-shop -w

# Create load generator deployment
oc create -f https://raw.githubusercontent.com/berndonline/openshift-ansible/master/examples/istio-loadgenerator.yml

As you see below each pod has a sidecar container with the Istio Envoy proxy which handles pod traffic:

[[email protected] ~]$ oc get pods
NAME                                     READY     STATUS    RESTARTS   AGE
adservice-7894dbfd8c-g4m9v               2/2       Running   0          49m
cartservice-758d66c648-79fj4             2/2       Running   4          49m
checkoutservice-7b9dc8b755-h2b2v         2/2       Running   0          49m
currencyservice-7b5c5f48fc-gtm9x         2/2       Running   0          49m
emailservice-79578566bb-jvwbw            2/2       Running   0          49m
frontend-6497c5f748-5fc4f                2/2       Running   0          49m
loadgenerator-764c5547fc-sw6mg           2/2       Running   0          40m
paymentservice-6b989d657c-klp4d          2/2       Running   0          49m
productcatalogservice-5bfbf4c77c-cw676   2/2       Running   0          49m
recommendationservice-c947d84b5-svbk8    2/2       Running   0          49m
redis-cart-79d84748cf-cvg86              2/2       Running   0          49m
shippingservice-6ccb7d8ff7-66v8m         2/2       Running   0          49m
[[email protected] ~]$

The Kiali web console answers the question about what microservices are part of the service mesh and how are they connected which gives you a great level of detail about the traffic flows:

Detailed traffic flow view:

The Isito installation comes with Jaeger which is an open source tracing tool to monitor and troubleshoot transactions:

Enough about this, lets connect to our cool Hipster Shop and happy shopping:

Additionally there is another example, the Istio Bookinfo if you want to try something smaller and less complex:

oc new-project myproject

oc adm policy add-scc-to-user anyuid -z default -n myproject
oc adm policy add-scc-to-user privileged -z default -n myproject

oc apply -n myproject -f https://raw.githubusercontent.com/Maistra/bookinfo/master/bookinfo.yaml
oc apply -n myproject -f https://raw.githubusercontent.com/Maistra/bookinfo/master/bookinfo-gateway.yaml
export GATEWAY_URL=$(oc get route -n istio-system istio-ingressgateway -o jsonpath='{.spec.host}')
curl -o /dev/null -s -w "%{http_code}\n" http://$GATEWAY_URL/productpage

curl -o destination-rule-all.yaml https://raw.githubusercontent.com/istio/istio/release-1.0/samples/bookinfo/networking/destination-rule-all.yaml
oc apply -f destination-rule-all.yaml

curl -o destination-rule-all-mtls.yaml https://raw.githubusercontent.com/istio/istio/release-1.0/samples/bookinfo/networking/destination-rule-all-mtls.yaml
oc apply -f destination-rule-all-mtls.yaml

oc get destinationrules -o yaml

I hope this is a useful article for getting started with Istio service mesh on OpenShift.

Getting started with OpenShift 4.0 Container Platform

I had a first look at OpenShift 4.0 and I wanted to share some information from what I have seen so far. The installation of the cluster is super easy and RedHat did a lot to improve the overall experience of the installation process to the previous OpenShift v3.x Ansible based installation and moving towards ephemeral cluster deployments.

There are a many changes under the hood and it’s not as obvious as Bootkube for the self-hosted/healing control-plane, MachineSets and the many internal operators to install and manage the OpenShift components ( api serverscheduler, controller manager, cluster-autoscalercluster-monitoringweb-consolednsingressnetworkingnode-tuning, and authentication ).

For the OpenShift 4.0 developer preview you need an RedHat account because you require a pull-secret for the cluster installation. For more information please visit: https://cloud.openshift.com/clusters/install

First we need to download the openshift-installer binary:

wget https://github.com/openshift/installer/releases/download/v0.16.1/openshift-install-linux-amd64
mv openshift-install-linux-amd64 openshift-install
chmod +x openshift-install

Then we create the install-configuration, it is required that you already have AWS account credentials and an Route53 DNS domain set-up:

$ ./openshift-install create install-config
INFO Platform aws
INFO AWS Access Key ID *********
INFO AWS Secret Access Key [? for help] *********
INFO Writing AWS credentials to "/home/centos/.aws/credentials" (https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html)
INFO Region eu-west-1
INFO Base Domain paas.domain.com
INFO Cluster Name cluster1
INFO Pull Secret [? for help] *********

Let’s look at the install-config.yaml

apiVersion: v1beta4
baseDomain: paas.domain.com
compute:
- name: worker
  platform: {}
  replicas: 3
controlPlane:
  name: master
  platform: {}
  replicas: 3
metadata:
  creationTimestamp: null
  name: ew1
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineCIDR: 10.0.0.0/16
  networkType: OpenShiftSDN
  serviceNetwork:
  - 172.30.0.0/16
platform:
  aws:
    region: eu-west-1
pullSecret: '{"auths":{...}'

Now we can continue to create the OpenShift v4 cluster which takes around 30mins to complete. At the end of the openshift-installer you see the auto-generate credentials to connect to the cluster:

$ ./openshift-install create cluster
INFO Consuming "Install Config" from target directory
INFO Creating infrastructure resources...
INFO Waiting up to 30m0s for the Kubernetes API at https://api.cluster1.paas.domain.com:6443...
INFO API v1.12.4+0ba401e up
INFO Waiting up to 30m0s for the bootstrap-complete event...
INFO Destroying the bootstrap resources...
INFO Waiting up to 30m0s for the cluster at https://api.cluster1.paas.domain.com:6443 to initialize...
INFO Waiting up to 10m0s for the openshift-console route to be created...
INFO Install complete!
INFO Run 'export KUBECONFIG=/home/centos/auth/kubeconfig' to manage the cluster with 'oc', the OpenShift CLI.
INFO The cluster is ready when 'oc login -u kubeadmin -p jMTSJ-F6KYy-mVVZ4-QVNPP' succeeds (wait a few minutes).
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.cluster1.paas.domain.com
INFO Login to the console with user: kubeadmin, password: jMTSJ-F6KYy-mVVZ4-QVNPP

The web-console has a very clean new design which I really like in addition to all the great improvements.

Under administration -> cluster settings you can explore the new auto-upgrade functionality of OpenShift 4.0:

You choose the new version to upgrade and everything else happens in the background which is a massive improvement to OpenShift v3.x where you had to run the ansible installer for this.

In the background the cluster operator upgrades the different platform components one by one.

Slowly you will see that the components move to the new build version.

Finished cluster upgrade:

You can only upgrade from one version 4.0.0-0.9 to the next version 4.0.0-0.10. It is not possible to upgrade and go straight from x-0.9 to x-0.11.

But let’s deploy the Google Hipster Shop example and expose the frontend-external service for some more testing:

oc login -u kubeadmin -p jMTSJ-F6KYy-mVVZ4-QVNPP https://api.cluster1.paas.domain.com:6443 --insecure-skip-tls-verify=true
oc new-project myproject
oc create -f https://raw.githubusercontent.com/berndonline/openshift-ansible/master/examples/hipster-shop.yml
oc expose svc frontend-external

Getting the hostname for the exposed service:

$ oc get route
NAME                HOST/PORT                                                   PATH      SERVICES            PORT      TERMINATION   WILDCARD
frontend-external   frontend-external-myproject.apps.cluster1.paas.domain.com             frontend-external   http                    None

Use the browser to connect to our Hipster Shop:

It’s also very easy to destroy the cluster as it is to create it, as you seen previously:

$ ./openshift-install destroy cluster
INFO Disassociated                                 arn="arn:aws:ec2:eu-west-1:552276840222:route-table/rtb-083e2da5d1183efa7" id=rtbassoc-01d27db162fa45402
INFO Disassociated                                 arn="arn:aws:ec2:eu-west-1:552276840222:route-table/rtb-083e2da5d1183efa7" id=rtbassoc-057f593640067efc0
INFO Disassociated                                 arn="arn:aws:ec2:eu-west-1:552276840222:route-table/rtb-083e2da5d1183efa7" id=rtbassoc-05e821b451bead18f
INFO Disassociated                                 IAM instance profile="arn:aws:iam::552276840222:instance-profile/ocp4-bgx4c-worker-profile" arn="arn:aws:ec2:eu-west-1:552276840222:instance/i-0f64a911b1ffa3eff" id=i-0f64a911b1ffa3eff name=ocp4-bgx4c-worker-profile role=ocp4-bgx4c-worker-role
INFO Deleted                                       IAM instance profile="arn:aws:iam::552276840222:instance-profile/ocp4-bgx4c-worker-profile" arn="arn:aws:ec2:eu-west-1:552276840222:instance/i-0f64a911b1ffa3eff" id=i-0f64a911b1ffa3eff name=0xc00090f9a8
INFO Deleted                                       arn="arn:aws:ec2:eu-west-1:552276840222:instance/i-0f64a911b1ffa3eff" id=i-0f64a911b1ffa3eff
INFO Deleted                                       arn="arn:aws:ec2:eu-west-1:552276840222:instance/i-00b5eedc186ba26a7" id=i-00b5eedc186ba26a7
...
INFO Deleted                                       arn="arn:aws:ec2:eu-west-1:552276840222:security-group/sg-016d4c7d435a1c97f" id=sg-016d4c7d435a1c97f
INFO Deleted                                       arn="arn:aws:ec2:eu-west-1:552276840222:subnet/subnet-076348368858e9a82" id=subnet-076348368858e9a82
INFO Deleted                                       arn="arn:aws:ec2:eu-west-1:552276840222:vpc/vpc-00c611ae1b9b8e10a" id=vpc-00c611ae1b9b8e10a
INFO Deleted                                       arn="arn:aws:ec2:eu-west-1:552276840222:dhcp-options/dopt-0ce8b6a1c31e0ceac" id=dopt-0ce8b6a1c31e0ceac

The install experience is great for OpenShift 4.0 which makes it very easy for everyone to create and get started quickly with an enterprise container platform. From the operational perspective I still need to see how to run the new platform because all the operators are great and makes it an easy to use cluster but what happens when one of the operators goes rogue and debugging this I am most interested in.

Over the coming weeks I will look into more detail around OpenShift 4.0 and the different new features, I am especially interested in Service Mesh.

OpenShift Networking and Network Policies

This article is about OpenShift networking in general but I also want to look at the Kubernetes CNI feature NetworkPolicy in a bit more detail. The latest OpenShift version 3.11 comes with three SDN deployment models:

  • ovs-subnet – This creates a single large vxlan between all the namespace and everyone is able to talk to each other.
  • ovs-multitenant – As the name already says this separates the namespaces into separate vxlan’s and only resources within the namespace are able to talk to each other. You have the possibility to join or making namespaces global.
  • ovs-networkpolicy – The newest SDN deployment method for OpenShift to enabling micro-segmentation to control the communication between pods and namespaces.
  • ovs-ovn – Next generation SDN for OpenShift but not yet officially released for OpenShift. For more information visit the OpenvSwitch Github repository ovn-kubernetes.

Here an overview of the common ovs-multitenant software defined network:

On an OpenShift node the tun0 interfaces owns the default gateway and is forwarding traffic to external endpoints outside the OpenShift platform or routing internal traffic to the openvswitch overlay. Both openvswitch and iptables are central components which are very important for the networking  on the platform.

Read the official OpenShift documentation managing networking or configuring the SDN for more information.

NetworkPolicy in Action

Let me first explain the example I use to test NetworkPolicy. We will have one hello-openshift pod behind service, and a busybox pod for testing the internal communication. I will create a default ingress deny policy and specifically allow tcp port 8080 to my hello-openshift pod. I am not planning to restrict the busybox pod with an egress policy, so all egress traffic is allowed.

Here you find the example yaml files to replicate the layout: busybox.yml and hello-openshift.yml

Short recap about Kubernetes service definition, they are just simple iptables entries and for this reason you cannot restrict them with NetworkPolicy.

[[email protected] ~]# iptables-save | grep 172.30.231.77
-A KUBE-SERVICES ! -s 10.128.0.0/14 -d 172.30.231.77/32 -p tcp -m comment --comment "myproject/hello-app-http:web cluster IP" -m tcp --dport 80 -j KUBE-MARK-MASQ
-A KUBE-SERVICES -d 172.30.231.77/32 -p tcp -m comment --comment "myproject/hello-app-http:web cluster IP" -m tcp --dport 80 -j KUBE-SVC-LFWXBQW674LJXLPD
[[email protected] ~]#

When you install OpenShift with ovs-networkpolicy, the default policy allows all traffic within a namespace. Let’s do a first test without a custom NetworkPolicy rule to see if I am able to connect to my hello-app-http service.

[[email protected] ~]# oc exec busybox-1-wn592 -- wget -S --spider http://hello-app-http
Connecting to hello-app-http (172.30.231.77:80)
  HTTP/1.1 200 OK
  Date: Tue, 19 Feb 2019 13:59:04 GMT
  Content-Length: 17
  Content-Type: text/plain; charset=utf-8
  Connection: close

[[email protected] ~]#

Now we add a default ingress deny policy to the namespace:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: deny-all-ingress
spec:
  podSelector:
  ingress: []

After applying the default deny policy you are not able to connect to the hello-app-http service. The connection is timing out because no flows entries are defined yet in the OpenFlow table:

[[email protected] ~]# oc exec busybox-1-wn592 -- wget -S --spider http://hello-app-http
Connecting to hello-app-http (172.30.231.77:80)
wget: can't connect to remote host (172.30.231.77): Connection timed out
command terminated with exit code 1
[[email protected] ~]#

Let’s add a new policy and allow tcp port 8080 and specifying a podSelector to match all pods with the label “role: web”.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-tcp8080
spec:
  podSelector:
    matchLabels:
      role: web
  ingress:
  - ports:
    - protocol: TCP
      port: 8080

This alone doesn’t do anything, you still need to patch the deployment config and add the label “role: web” to your deployment config metadata information.

oc patch dc/hello-app-http --patch '{"spec":{"template":{"metadata":{"labels":{"role":"web"}}}}}'

To rollback the previous changes simply use the ‘oc rollback dc/hello-app-http’ command.

Now let’s check the openvswitch flow table and you will see that a new flow got added with the destination of my hello-openshift pod 10.128.0.103 on port 8080.

Afterwards we try again to connect to my hello-app-http service and you see that we get a succesful connect:

[[email protected] ~]# oc exec ovs-q4p8m -n openshift-sdn -- ovs-ofctl -O OpenFlow13 dump-flows br0 | grep '10.128.0.103.*8080'
 cookie=0x0, duration=221.251s, table=80, n_packets=15, n_bytes=1245, priority=150,tcp,reg1=0x2dfc74,nw_dst=10.128.0.103,tp_dst=8080 actions=output:NXM_NX_REG2[]
[[email protected] ~]#
[[email protected] ~]# oc exec busybox-1-wn592 -- wget -S --spider http://hello-app-http
Connecting to hello-app-http (172.30.231.77:80)
  HTTP/1.1 200 OK
  Date: Tue, 19 Feb 2019 14:21:57 GMT
  Content-Length: 17
  Content-Type: text/plain; charset=utf-8
  Connection: close

[[email protected] ~]#

The hello openshift container publishes two tcp ports 8080 and 8888, so finally let’s try to connect to the pod IP address on port 8888, and we will find out that I am not able to connect, the reason is that I only allowed 8080 in the policy.

[[email protected] ~]# oc exec busybox-1-wn592 -- wget -S --spider http://10.128.0.103:8888
Connecting to 10.128.0.103:8888 (10.128.0.103:8888)
wget: can't connect to remote host (10.128.0.103): Connection timed out
command terminated with exit code 1
[[email protected] ~]#

There are great posts on the RedHat OpenShift blog which you should checkout networkpolicies-and-microsegmentation and openshift-and-network-security-zones-coexistence-approaches. Otherwise I can recommend having a look at Ahmet Alp Balkan Github repository about Kubernetes network policy recipes, where you can find some good examples.