BGP EVPN and VXLAN with Cumulus Linux

I did some updates on my Cumulus Linux Vagrant topology and added new functions to my post about an Ansible Playbook for the Cumulus Linux BGP IP-Fabric.

To the Vagrant topology, I added 6x servers and per clag-pair, each server is connected to a VLAN and the second server is connected to a VXLAN.

Here are the links to the repositories where you find the Ansible Playbook https://github.com/berndonline/cumulus-lab-provision and the Vagrantfile https://github.com/berndonline/cumulus-lab-vagrant

In the Ansible Playbook, I added BGP EVPN and one VXLAN which spreads over all Leaf and Edge switches. VXLAN routing is happening on the Edge switches into the rest of the virtual data centre network.

Here is an example of the additional variables I added to edge-1 for BGP EVPN and VXLAN:

group_vars/edge.yml:

clagd_vxlan_anycast_ip: 10.255.100.1

The VXLAN anycast IP is needed in BGP for EVPN and the same IP is shared between edge-1 and edge-2. The same is for the other leaf switches, per clag pair they share the same anycast IP address.

host_vars/edge-1.yml:

---

loopback: 10.255.0.3/32

bgp_fabric:
  asn: 65001
  router_id: 10.255.0.3
  neighbor:
    - swp51
    - swp52
  networks:
    - 10.0.4.0/24
    - 10.255.0.3/32
    - 10.255.100.1/32
    - 10.0.255.0/28
  evpn: true
  advertise_vni: true

peerlink:
  bond_slaves: swp53 swp54
  mtu: 9216
  vlan: 4094
  address: 169.254.1.1/30
  clagd_peer_ip: 169.254.1.2
  clagd_backup_ip: 192.168.100.4
  clagd_sys_mac: 44:38:39:FF:40:94
  clagd_priority: 4096

bridge:
  ports: peerlink vxlan10201
  vids: 901 201

vlans:
  901:
    alias: edge-transit-901
    vipv4: 10.0.255.14/28
    vmac: 00:00:5e:00:09:01
    pipv4: 10.0.255.12/28
  201:
    alias: prod-server-10201
    vipv4: 10.0.4.254/24
    vmac: 00:00:00:00:02:01
    pipv4: 10.0.4.252/24
    vlan_id: 201
    vlan_raw_device: bridge

vxlans:
  10201:
    alias: prod-server-10201
    vxlan_local_tunnelip: 10.255.0.3
    bridge_access: 201
    bridge_learning: 'off'
    bridge_arp_nd_suppress: 'on'

On the Edge switches, because of VXLAN routing, you find a mapping between VXLAN 10201 to VLAN 201 which has VRR running.

I needed to do some modifications to the interfaces template interfaces_config.j2:

{% if loopback is defined %}
auto lo
iface lo inet loopback
    address {{ loopback }}
{% if clagd_vxlan_anycast_ip is defined %}
    clagd-vxlan-anycast-ip {{ clagd_vxlan_anycast_ip }}
{% endif %}
{% endif %}
...
{% if bridge is defined %}
{% for vxlan_id, value in vxlans.items() %}
auto vxlan{{ vxlan_id }}
iface vxlan{{ vxlan_id }}
    alias {{ value.alias }}
    vxlan-id {{ vxlan_id }}
    vxlan-local-tunnelip {{ value.vxlan_local_tunnelip }}
    bridge-access {{ value.bridge_access }}
    bridge-learning {{ value.bridge_learning }}
    bridge-arp-nd-suppress {{ value.bridge_arp_nd_suppress }}
    mstpctl-bpduguard yes
    mstpctl-portbpdufilter yes

{% endfor %}
{% endif %}

There were also some modifications needed to the FRR template frr.j2 to add EVPN to the BGP configuration:

...
{% if bgp_fabric.evpn is defined %}
 address-family ipv6 unicast
  neighbor fabric activate
 exit-address-family
 !
 address-family l2vpn evpn
  neighbor fabric activate
{% if bgp_fabric.advertise_vni is defined %}
  advertise-all-vni
{% endif %}
 exit-address-family
{% endif %}
{% endif %}
...

For more detailed information about EVPN and VXLAN routing on Cumulus Linux, I recommend reading the documentation Ethernet Virtual Private Network – EVPN and VXLAN Routing.

Have fun testing the new features in my Ansible Playbook and please share your feedback.

Leave a comment

Ansible Playbook for Arista vEOS BGP IP-Fabric

Over the Christmas holidays, I was working just for fun on an Arista vEOS Vagrant topology and Ansible Playbook. I reused my Ansible Playbook from my previous post about an Ansible Playbook for Cumulus Linux BGP IP-Fabric and Cumulus NetQ Validation.

Arista only has a Virtualbox vEOS image and there is an ISO image to boot the virtual appliance which I don’t understand why they have done this, rather I prefer the way Cumulus provide their VX images for testing to use with Virtualbox or KVM.

I found an interesting blog post on how to run vEOS images with KVM (Libvirt). I tried it and I could run vEOS in KVM but unfortunately, it wasn’t  stable enough to run more complex virtual network topologies so I had to switch back to Virtualbox. I will give it a try again in a few month because I prefer KVM over Virtualbox.

Anyway, you’ll find more information about how to use vEOS with Virtualbox and Vagrant.

My Virtualbox Vagrantfile can be found in my Github repository: https://github.com/berndonline/arista-lab-vagrant

Network overview:

Ansible Playbook:

As I have mentioned before I tried to be close as possible to my Cumulus Linux Ansible Playbook and tried to keep the variables and roles the same. They are differences of course in the Jinja2 templates and tasks but the overall structure is similar.

Here you’ll find the repository with the Ansible Playbook: https://github.com/berndonline/arista-lab-provision

Because Arista didn’t prepare the images very well and only created a vagrant user without adding the ssh key for authentication I needed to use a CLI provider with a username and password. But this is only a minor issue otherwise it works the same. See the site.yml below:

---

- hosts: network

  connection: local
  gather_facts: 'False'

  vars:
    cli:
      username: vagrant
      password: vagrant

  roles:
    - leafgroups
    - hostname
    - interfaces
    - routing
    - ntp

In the roles, I have used the Arista EOS Ansible modules eos_config and eos_system.

Boot up the Vagrant environment and then run the Playbook afterwards:

PLAY [network] *****************************************************************

TASK [leafgroups : create leaf groups based on clag_pairs] *********************
ok: [leaf-1] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2']))
skipping: [leaf-1] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4'])) 
skipping: [leaf-3] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2'])) 
ok: [leaf-3] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4']))
skipping: [leaf-4] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2'])) 
ok: [leaf-2] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2']))
skipping: [leaf-2] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4'])) 
ok: [leaf-4] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4']))
skipping: [spine-1] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2'])) 
skipping: [spine-1] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4'])) 
skipping: [spine-2] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2'])) 
skipping: [spine-2] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4'])) 

TASK [leafgroups : include leaf group variables] *******************************
ok: [leaf-1] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2']))
skipping: [leaf-3] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2'])) 
skipping: [leaf-1] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4'])) 
skipping: [leaf-4] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2'])) 
skipping: [spine-1] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2'])) 
skipping: [spine-1] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4'])) 
ok: [leaf-3] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4']))
ok: [leaf-2] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2']))
skipping: [leaf-2] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4'])) 
ok: [leaf-4] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4']))
skipping: [spine-2] => (item=(u'leafgroup1', [u'leaf-1', u'leaf-2'])) 
skipping: [spine-2] => (item=(u'leafgroup2', [u'leaf-3', u'leaf-4'])) 

TASK [hostname : write hostname and domain name] *******************************
changed: [leaf-4]
changed: [spine-1]
changed: [leaf-1]
changed: [leaf-3]
changed: [leaf-2]
changed: [spine-2]

TASK [interfaces : write interface configuration] ******************************
changed: [spine-1]
changed: [leaf-2]
changed: [leaf-4]
changed: [leaf-3]
changed: [leaf-1]
changed: [spine-2]

TASK [routing : write routing configuration] ***********************************
changed: [leaf-1]
changed: [leaf-4]
changed: [spine-1]
changed: [leaf-2]
changed: [leaf-3]
changed: [spine-2]

TASK [ntp : write ntp configuration] *******************************************
changed: [leaf-2] => (item=216.239.35.8)
changed: [leaf-1] => (item=216.239.35.8)
changed: [leaf-3] => (item=216.239.35.8)
changed: [spine-1] => (item=216.239.35.8)
changed: [leaf-4] => (item=216.239.35.8)
changed: [spine-2] => (item=216.239.35.8)

PLAY RECAP *********************************************************************
leaf-1                     : ok=6    changed=4    unreachable=0    failed=0   
leaf-2                     : ok=6    changed=4    unreachable=0    failed=0   
leaf-3                     : ok=6    changed=4    unreachable=0    failed=0   
leaf-4                     : ok=6    changed=4    unreachable=0    failed=0   
spine-1                    : ok=4    changed=4    unreachable=0    failed=0   
spine-2                    : ok=4    changed=4    unreachable=0    failed=0   

I didn’t use the leafgroups role for variables in my Playbook but I left it just in case.

Because Arista has nothing similar to Cumulus NetQ to validate the configuration I create a simple arista_check_icmp.yml playbook and use ping from the leaf switches to test if the configuration is successfully deployed.

PLAY [leaf] ********************************************************************

TASK [validate connection from leaf-1] *****************************************
skipping: [leaf-3] => (item=10.255.0.4) 
skipping: [leaf-3] => (item=10.255.0.5) 
skipping: [leaf-3] => (item=10.255.0.6) 
skipping: [leaf-2] => (item=10.255.0.4) 
skipping: [leaf-2] => (item=10.255.0.5) 
skipping: [leaf-2] => (item=10.255.0.6) 
skipping: [leaf-3] => (item=10.0.102.252) 
skipping: [leaf-4] => (item=10.255.0.4) 
skipping: [leaf-3] => (item=10.0.102.253) 
skipping: [leaf-3] => (item=10.0.102.254) 
skipping: [leaf-4] => (item=10.255.0.5) 
skipping: [leaf-2] => (item=10.0.102.252) 
skipping: [leaf-4] => (item=10.255.0.6) 
skipping: [leaf-2] => (item=10.0.102.253) 
skipping: [leaf-2] => (item=10.0.102.254) 
skipping: [leaf-4] => (item=10.0.102.252) 
skipping: [leaf-4] => (item=10.0.102.253) 
skipping: [leaf-4] => (item=10.0.102.254) 
ok: [leaf-1] => (item=10.255.0.4)
ok: [leaf-1] => (item=10.255.0.5)
ok: [leaf-1] => (item=10.255.0.6)
ok: [leaf-1] => (item=10.0.102.252)
ok: [leaf-1] => (item=10.0.102.253)
ok: [leaf-1] => (item=10.0.102.254)

TASK [validate connection from leaf-2] *****************************************
skipping: [leaf-1] => (item=10.255.0.3) 
skipping: [leaf-3] => (item=10.255.0.3) 
skipping: [leaf-1] => (item=10.255.0.5) 
skipping: [leaf-3] => (item=10.255.0.5) 
skipping: [leaf-1] => (item=10.255.0.6) 
skipping: [leaf-3] => (item=10.255.0.6) 
skipping: [leaf-1] => (item=10.0.102.252) 
skipping: [leaf-1] => (item=10.0.102.253) 
skipping: [leaf-4] => (item=10.255.0.3) 
skipping: [leaf-3] => (item=10.0.102.252) 
skipping: [leaf-1] => (item=10.0.102.254) 
skipping: [leaf-3] => (item=10.0.102.253) 
skipping: [leaf-3] => (item=10.0.102.254) 
skipping: [leaf-4] => (item=10.255.0.5) 
skipping: [leaf-4] => (item=10.255.0.6) 
skipping: [leaf-4] => (item=10.0.102.252) 
skipping: [leaf-4] => (item=10.0.102.253) 
skipping: [leaf-4] => (item=10.0.102.254) 
ok: [leaf-2] => (item=10.255.0.3)
ok: [leaf-2] => (item=10.255.0.5)
ok: [leaf-2] => (item=10.255.0.6)
ok: [leaf-2] => (item=10.0.102.252)
ok: [leaf-2] => (item=10.0.102.253)
ok: [leaf-2] => (item=10.0.102.254)

TASK [validate connection from leaf-3] *****************************************
skipping: [leaf-1] => (item=10.255.0.3) 
skipping: [leaf-1] => (item=10.255.0.4) 
skipping: [leaf-2] => (item=10.255.0.3) 
skipping: [leaf-1] => (item=10.255.0.6) 
skipping: [leaf-1] => (item=10.0.101.252) 
skipping: [leaf-2] => (item=10.255.0.4) 
skipping: [leaf-2] => (item=10.255.0.6) 
skipping: [leaf-1] => (item=10.0.101.253) 
skipping: [leaf-4] => (item=10.255.0.3) 
skipping: [leaf-2] => (item=10.0.101.252) 
skipping: [leaf-4] => (item=10.255.0.4) 
skipping: [leaf-1] => (item=10.0.101.254) 
skipping: [leaf-4] => (item=10.255.0.6) 
skipping: [leaf-2] => (item=10.0.101.253) 
skipping: [leaf-4] => (item=10.0.101.252) 
skipping: [leaf-2] => (item=10.0.101.254) 
skipping: [leaf-4] => (item=10.0.101.253) 
skipping: [leaf-4] => (item=10.0.101.254) 
ok: [leaf-3] => (item=10.255.0.3)
ok: [leaf-3] => (item=10.255.0.4)
ok: [leaf-3] => (item=10.255.0.6)
ok: [leaf-3] => (item=10.0.101.252)
ok: [leaf-3] => (item=10.0.101.253)
ok: [leaf-3] => (item=10.0.101.254)

TASK [validate connection from leaf-4] *****************************************
skipping: [leaf-1] => (item=10.255.0.3) 
skipping: [leaf-3] => (item=10.255.0.3) 
skipping: [leaf-1] => (item=10.255.0.4) 
skipping: [leaf-3] => (item=10.255.0.4) 
skipping: [leaf-1] => (item=10.255.0.5) 
skipping: [leaf-2] => (item=10.255.0.3) 
skipping: [leaf-3] => (item=10.255.0.5) 
skipping: [leaf-3] => (item=10.0.101.252) 
skipping: [leaf-2] => (item=10.255.0.4) 
skipping: [leaf-1] => (item=10.0.101.252) 
skipping: [leaf-2] => (item=10.255.0.5) 
skipping: [leaf-2] => (item=10.0.101.252) 
skipping: [leaf-3] => (item=10.0.101.253) 
skipping: [leaf-1] => (item=10.0.101.253) 
skipping: [leaf-1] => (item=10.0.101.254) 
skipping: [leaf-3] => (item=10.0.101.254) 
skipping: [leaf-2] => (item=10.0.101.253) 
skipping: [leaf-2] => (item=10.0.101.254) 
ok: [leaf-4] => (item=10.255.0.3)
ok: [leaf-4] => (item=10.255.0.4)
ok: [leaf-4] => (item=10.255.0.5)
ok: [leaf-4] => (item=10.0.101.252)
ok: [leaf-4] => (item=10.0.101.253)
ok: [leaf-4] => (item=10.0.101.254)

PLAY RECAP *********************************************************************
leaf-1                     : ok=1    changed=0    unreachable=0    failed=0   
leaf-2                     : ok=1    changed=0    unreachable=0    failed=0   
leaf-3                     : ok=1    changed=0    unreachable=0    failed=0   
leaf-4                     : ok=1    changed=0    unreachable=0    failed=0   

I don’t usually work with Arista devices and this was a try to use a different switch vendor but still keep using the type of Ansible Playbook.

Please tell me if you like it and share your feedback.

Leave a comment

Ansible Playbook for Cisco ASAv Firewall Topology

More about Ansible network automation with Cisco ASAv and continuous integration testing like in my previous posts using Vagrant and Gitlab-CI.

Network overview:

Here’s my Github repository where you can find the complete Ansible Playbook: https://github.com/berndonline/asa-lab-provision

Automating firewall configuration is not that easy and can get very complicated because you have different objects, access-lists and service policies to configure which all together makes the playbook complex rather than simple.

What you won’t find in my playbook is how to automate the cluster deployment because this wasn’t possible in my scenario using ASAv and Vagrant. I didn’t have physical Cisco ASA firewall on hand to do this but I might add this later in the coming months.

Let’s look at the different variable files I created; first the host_vars for asa-1.yml which is very similar to a Cisco router:

---

hostname: asa-1
domain_name: lab.local

interfaces:
  0/0:
    alias: connection rtr-1 inside
    nameif: inside
    security_level: 100
    address: 10.0.255.1
    mask: 255.255.255.0

  0/1:
    alias: connection rtr-2 outside
    nameif: outside
    security_level: 0
    address: 217.100.100.1
    mask: 255.255.255.0

routes:
  - route outside 0.0.0.0 0.0.0.0 217.100.100.254 1

I then use multiple files in group_vars for objects.ymlobject-groups.ymlaccess-lists.yml and nat.yml to configure specific firewall settings.

Roles:

  • Hostname: The task in main.yml uses the Ansible module asa_config and configures hostname and domain name.
  • Interfaces:  This role uses the Ansible module asa_config to deploy the template interfaces.j2 to configure the interfaces. In the main.yml is a second task to enable the interfaces when the previous template applied the configuration.
  • Routing: Similar to the interfaces role and uses also the asa_config module to deploy the template routing.j2 for the static routes
  • Objects: The first task in main.yml loads the objects.yml from group_vars, the second task deploys the template objects.j2.
  • Object-Groups: Uses same tasks in main.yml and template object-groups.j2 like the objects role but the commands are slightly different.
  • Access-Lists: One of the more complicated roles I needed to work on, in the main.yml are multiple tasks to load variables like in the previous roles, then runs a task to clear access-lists if the variable “override_acl” from access-lists.yml group_vars is set to “true” otherwise it skips the next tasks. When the variable are set to true and the access-lists are cleared it then writes new access-lists using the Ansible module asa_acl and finishes with a task to assigning the newly created access-lists to the interfaces.
  • NAT: This role is again similar to the objects role using a task main.yml to load variable file and deploys the template nat.j2. The NAT role uses object nat and only works if you created the object before in the objects group_vars.
  • Policy-Framework: Multiple tasks in main.yml first clears global policy and policy maps and afterwards recreates them. Similar approach like the access lists to keep it consistent.

Main Ansible Playbook site.yml

---

- hosts: asa-1

  connection: local
  user: vagrant
  gather_facts: 'no'

  roles:
    - hostname
    - interfaces
    - routing
    - objects
    - object-groups
    - access-lists
    - nat
    - policy-framework

When a change triggers the gitlab-ci pipeline it spins up the Vagrant instances and executes the main Ansible Playbook. After the Vagrant instances are booted, first the two router rtr-1 and rtr-2 need to be configured with cisco_router_config.yml, then afterwards the main site.yml will be run.

Once the main playbook finishes for the Cisco ASA a last connectivity check will be execute using the playbook asa_check_icmp.yml. Just a simple ping to see if the base configuration is applied correctly.

If everything goes well, like in this example, the job is successful:

I will continue to improve the Playbook and the CICD pipeline so come back later to check it out.

Leave a comment

Ansible Playbook for Cisco BGP Routing Topology

This is my Ansible Playbook for a simple Cisco BGP routing topology and using a CICD pipeline for integration testing. The virtual network environment is created on-demand by using Vagrant, see my post about Cisco IOSv and XE network simulation using Vagrant.

Network overview:

Here’s my Github repository where you can find the complete Ansible Playbook: https://github.com/berndonline/cisco-lab-provision

You can find all the variables for the interface and routing configuration under host_vars. Below is an example for router rtr-1:

---

hostname: rtr-1
domain_name: lab.local

loopback:
  address: 10.255.0.1
  mask: 255.255.255.255

interfaces:
  0/1:
    alias: connection rtr-2
    address: 10.0.255.1
    mask: 255.255.255.252

  0/2:
    alias: connection rtr-3
    address: 10.0.255.5
    mask: 255.255.255.252

bgp:
  asn: 65001
  neighbor:
    - {address: 10.0.255.2, remote_as: 65000}
    - {address: 10.0.255.6, remote_as: 65000}
  networks:
    - {network: 10.0.255.0, mask: 255.255.255.252}
    - {network: 10.0.255.4, mask: 255.255.255.252}
    - {network: 10.255.0.1, mask: 255.255.255.255}
  maxpath: 2

Roles:

  • Hostname: The task in main.yml uses the Ansible module ios_system and configures hostname, domain name and disables dns lookups.
  • Interfaces: This role uses the Ansible module ios_config to deploy the template interfaces.j2 to configure the interfaces. In the main.yml is a second task to enable the interfaces when the previous template applied the configuration.
  • Routing: Very similar to the interfaces role and uses also the ios_config module to deploy the template routing.j2 for the BGP routing configuration.

Main Ansible Playbook site.yml:

---

- hosts: all

  connection: local
  user: vagrant
  gather_facts: 'no'

  roles:
    - hostname
    - interfaces
    - routing

When a change triggers the gitlab-ci pipeline it spins up the Vagrant instances and executes the main Ansible Playbook:

After the main site.yml ran, a second Playbook is executed for basic connectivity testing cisco_check_icmp.yml. This uses the Ansible module ios_ping and can be useful in my case to validate if the configuration was correctly applied:

If everything goes well, like in this example, the job is successful:

I will continue to improve the Playbook and the CICD pipeline so come back later to check it out.

Leave a comment

Ansible Playbook for Cumulus Linux BGP IP-Fabric and Cumulus NetQ Validation

This is my Ansible Playbook for a Cumulus Linux BGP IP-Fabric using BGP unnumbered and Cumulus NetQ to validate the configuration in a CICD pipeline. I use the same CICD pipeline from my previous post about Continuous Integration and Delivery for Networking with Cumulus Linux but added the Cumulus NetQ validation in the production stage to check BGP and CLAG configuration.

Network overview:

Here’s my Github repository where you find the complete Ansible Playbook: https://github.com/berndonline/cumulus-lab-provision

The variables are split between group_vars and host_vars. Still need to see if I can find a better way for the variables because interface settings for spine and edge switches are in group_vars, and for leaf switches the interface configuration is per host in host_vars. Not ideal at the moment, it should be the same for all devices.

Roles:

  • Hostname: This task changes the hostname
  • Interfaces: This creates the interfaces and bridge (only leafs and edges) configuration. The task uses templates interfaces.j2 and interfaces_config.j2 to create the configuration files under /etc/network/…
  • Routing: The template frr.j2 creates the FRR (Free Range Routing) configuration file. FRR replaces Quagga since Cumulus Linux version 3.4.x
  • PTM: Uses as well an template topology.j2 to generate the topology file for the Prescriptive Topology Manager (PTM)
  • NTP: Ntp and timezone settings

In most of the cases I use Jinja2 templates to generate configuration files. The site.yml is otherwise very simple. It executes the different roles, and triggers the handlers if a change is made by a role.

---

- hosts: network
  strategy: free

  user: cumulus
  become: 'True'
  gather_facts: 'False'

  handlers:
    - name: reload networking
      command: "{{item}}"
      with_items:
        - ifreload -a
        - sleep 10

    - name: reload frr
      service: name=frr state=reloaded

    - name: apply hostname
      command: hostname -F /etc/hostname

    - name: restart netq agent
      command: netq config agent restart

    - name: reload ptmd
      service: name=ptmd state=reloaded

    - name: apply timezone
      command: /usr/sbin/dpkg-reconfigure --frontend noninteractive tzdata

    - name: restart ntp
      service: name=ntp state=restarted

  roles:
    - hostname
    - interfaces
    - routing
    - ptm
    - ntp

Like mentioned in previous posts, I use Gitlab-CI for my Continuous Integration / Continuous Delivery (CICD) pipeline to simulate changes against a virtual Cumulus Linux network using Vagrant. You can find more information about the pipeline configuration in the .gitlab-ci.yml.

Changes in the staging branch will spin-up the Vagrant environment but only executes the the Ansible Playbook:

Cumulus NetQ configuration validation in production:

The production stage in the pipeline spins-up the Vagrant environment and executes the Ansible Playbook, then continues executing the two NetQ checks netq_check_bgp.yml and netq_check_clag.yml to validate the BGP and CLAG configuration:

The result will look like this when all stages finish successfully:

I will continue to improve the Playbook and the CICD pipeline so come back later to check it out.

In my repository I have some other useful Playbooks for config backup and restore but also to collect and remove cl-support.

config_backup.yml

config_restore.yml

cl-support_get.yml

cl-support_remove.yml

Please tell me if you like it and share your feedback.

See my new post about BGP EVPN and VXLAN with Cumulus Linux

Leave a comment